Notice: Dear Valued Customers, Please note that we have moved to new location.
Our new address is No. 216A, Galle Road, Ratmalana.
In front of Mount Lavinia Police Station
Shopping Cart
Cart Subtotal

ATTINY2313-20PU

Rs 190.00
Out of stock
SKU
LTMCAT01

Details

Features
• Utilizes the AVR® RISC Architecture
• AVR – High-performance and Low-power RISC Architecture
– 120 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
– Up to 20 MIPS Throughput at 20 MHz
• Data and Non-volatile Program and Data Memories
– 2K Bytes of In-System Self Programmable Flash
Endurance 10,000 Write/Erase Cycles
– 128 Bytes In-System Programmable EEPROM
Endurance: 100,000 Write/Erase Cycles
– 128 Bytes Internal SRAM
– Programming Lock for Flash Program and EEPROM Data Security
• Peripheral Features
– One 8-bit Timer/Counter with Separate Prescaler and Compare Mode
– One 16-bit Timer/Counter with Separate Prescaler, Compare and Capture Modes
– Four PWM Channels
– On-chip Analog Comparator
– Programmable Watchdog Timer with On-chip Oscillator
– USI – Universal Serial Interface
– Full Duplex USART
• Special Microcontroller Features
– debugWIRE On-chip Debugging
– In-System Programmable via SPI Port
– External and Internal Interrupt Sources
– Low-power Idle, Power-down, and Standby Modes
– Enhanced Power-on Reset Circuit
– Programmable Brown-out Detection Circuit
– Internal Calibrated Oscillator
• I/O and Packages
– 18 Programmable I/O Lines
– 20-pin PDIP, 20-pin SOIC, 20-pad QFN/MLF
• Operating Voltages
– 1.8 – 5.5V (ATtiny2313V)
– 2.7 – 5.5V (ATtiny2313)
• Speed Grades
– ATtiny2313V: 0 – 4 MHz @ 1.8 - 5.5V, 0 – 10 MHz @ 2.7 – 5.5V
– ATtiny2313: 0 – 10 MHz @ 2.7 - 5.5V, 0 – 20 MHz @ 4.5 – 5.5V
• Typical Power Consumption
– Active Mode
1 MHz, 1.8V: 230 μA
32 kHz, 1.8V: 20 μA (including oscillator)
– Power-down Mode
< 0.1 μA at 1.8V

Pin Descriptions
VCC Digital supply voltage.
GND Ground.
Port A (PA2..PA0) Port A is a 3-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port A output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port A pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port A also serves the functions of various special features of the ATtiny2313 as listed on page
53.
Port B (PB7..PB0) Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port B also serves the functions of various special features of the ATtiny2313 as listed on page
53.
Port D (PD6..PD0) Port D is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port D output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port D also serves the functions of various special features of the ATtiny2313 as listed on page
56.
RESET Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running. The minimum pulse length is given in Table 15 on page
34. Shorter pulses are not guaranteed to generate a reset. The Reset Input is an alternate function
for PA2 and dW.
XTAL1 Input to the inverting Oscillator amplifier and input to the internal clock operating circuit. XTAL1
is an alternate function for PA0.
XTAL2 Output from the inverting Oscillator amplifier. XTAL2 is an alternate function for PA1.

General
Information
Resources A comprehensive set of development tools, application notes and datasheets are available for
downloadon http://www.atmel.com/avr.
Code Examples This documentation contains simple code examples that briefly show how to use various parts of
the device. These code examples assume that the part specific header file is included before
compilation. Be aware that not all C compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation
for more details.
Disclaimer Typical values contained in this data sheet are based on simulations and characterization of
other AVR microcontrollers manufactured on the same process technology. Min and Max values
will be available after the device is characterized.

Reviews

Write Your Own Review
You're reviewing:ATTINY2313-20PU
Your Rating
Compare Products
You have no items to compare.
Please wait...